Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
medRxiv ; 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38293053

RESUMEN

Background: We previously described the KINSSHIP syndrome, an autosomal dominant disorder associated with intellectual disability (ID), mesomelic dysplasia and horseshoe kidney,caused by de novo variants in the degron of AFF3. Mouse knock-ins and overexpression in zebrafish provided evidence for a dominant-negative (DN) mode-of-action, wherein an increased level of AFF3 resulted in pathological effects. Methods: Evolutionary constraints suggest that other mode-of-inheritance could be at play. We challenged this hypothesis by screening ID cohorts for individuals with predicted-to-be deleterious variants in AFF3. We used both animal and cellular models to assess the deleteriousness of the identified variants. Results: We identified an individual with a KINSSHIP-like phenotype carrying a de novo partial duplication of AFF3 further strengthening the hypothesis that an increased level of AFF3 is pathological. We also detected seventeen individuals displaying a milder syndrome with either heterozygous LoF or biallelic missense variants in AFF3. Consistent with semi-dominance, we discovered three patients with homozygous LoF and one compound heterozygote for a LoF and a missense variant, who presented more severe phenotypes than their heterozygous parents. Matching zebrafish knockdowns exhibit neurological defects that could be rescued by expressing human AFF3 mRNA, confirming their association with the ablation of aff3. Conversely, some of the human AFF3 mRNAs carrying missense variants identified in affected individuals did not complement. Overexpression of mutated AFF3 mRNAs in zebrafish embryos produced a significant increase of abnormal larvae compared to wild-type overexpression further demonstrating deleteriousness. To further assess the effect of AFF3 variation, we profiled the transcriptome of fibroblasts from affected individuals and engineered isogenic cells harboring +/+, DN/DN, LoF/+, LoF/LoF or DN/LoF AFF3 genotypes. The expression of more than a third of the AFF3 bound loci is modified in either the DN/DN or the LoF/LoF lines. While the same pathways are affected, only about one-third of the differentially expressed genes are common to these homozygote datasets, indicating that AFF3 LoF and DN variants largely modulate transcriptomes differently, e.g. the DNA repair pathway displayed opposite modulation. Conclusions: Our results and the high pleiotropy shown by variation at this locus suggest that minute changes in AFF3 function are deleterious.

2.
PLoS One ; 18(12): e0294969, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38051749

RESUMEN

Founder variants in sarcomere protein genes account for a significant proportion of disease-causing variants in patients with hypertrophic cardiomyopathy (HCM). However, information on founder variants in non-sarcomeric protein genes, such as FHOD3, which have only recently been associated with HCM, remains scarce. In this study, we conducted a retrospective analysis of exome sequencing data of 134 probands with HCM for recurrent pathogenic variants. We discovered a novel likely pathogenic variant c.1646+2T>C in FHOD3 in heterozygous state in eight probands with HCM and confirmed its presence in seven additional relatives. Individuals with this variant had a wide range of ages at onset of the disease (4-63 years). No adverse cardiac events were observed. Haplotype analysis revealed that the individuals with this variant shared a genomic region of approximately 5 Mbp surrounding the variant, confirming the founder effect of the variant. FHOD3 c.1646+2T>C is estimated to have arisen 58 generations ago (95% CI: 45-81) in a common ancestor living on the Balkans. A founder FHOD3 c.1646+2T>C variant is the second most common genetic variant in our cohort of patients with HCM, occurring in 16% of probands with a known genetic cause of HCM, which represents a substantially higher proportion than the currently estimated 0.5-2% for causal FHOD3 variants. Our study broadens the understanding of the genetic causes of HCM and may improve the diagnosis of this condition, particularly in patients from the Balkans.


Asunto(s)
Cardiomiopatía Hipertrófica , Humanos , Estudios de Cohortes , Estudios Retrospectivos , Peninsula Balcánica , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/diagnóstico , Heterocigoto , Mutación , Forminas/genética
3.
Front Genet ; 14: 1167054, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37533431

RESUMEN

The NONO gene encodes a nuclear protein involved in transcriptional regulation, RNA synthesis and DNA repair. Hemizygous loss-of function, de novo or maternally inherited variants in NONO have been associated with an X-linked syndromic intellectual developmental disorder-34 (OMIM # 300967), characterized by developmental delay, intellectual disability, hypotonia, macrocephaly, elongated face, structural abnormalities of corpus callosum and/or cerebellum, congenital heart defect and left ventricular non-compaction cardiomyopathy. Few patients have been described in the literature and the phenotype data are limited. We report a 17-year-old boy with dolihocephaly, elongated face, strabismus, speech and motor delay, intellectual disability, congenital heart defect (ASD, VSD and Ebstein's anomaly), left ventricular non-compaction cardiomyopathy, bilateral inguinal hernia and cryptorchidism. Additional features included recurrent fractures due to multiple non-ossifying fibromas, thrombocytopenia, and renal anomalies. Exome sequencing revealed a de novo pathogenic variant (NM_001145408.2: c.348+2_ 348+15del) in intron 5 of the NONO gene. Renal anomalies and thrombocytopenia have been rarely reported in patients with NONO-X-linked intellectual disability syndrome, while recurrent fractures due to multiple non-ossifying fibromas have not previously been associated with this syndrome. The phenotypic spectrum of NONO-X-linked intellectual disability syndrome may be broader than currently known.

4.
Am J Hum Genet ; 110(8): 1356-1376, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37421948

RESUMEN

By converting physical forces into electrical signals or triggering intracellular cascades, stretch-activated ion channels allow the cell to respond to osmotic and mechanical stress. Knowledge of the pathophysiological mechanisms underlying associations of stretch-activated ion channels with human disease is limited. Here, we describe 17 unrelated individuals with severe early-onset developmental and epileptic encephalopathy (DEE), intellectual disability, and severe motor and cortical visual impairment associated with progressive neurodegenerative brain changes carrying ten distinct heterozygous variants of TMEM63B, encoding for a highly conserved stretch-activated ion channel. The variants occurred de novo in 16/17 individuals for whom parental DNA was available and either missense, including the recurrent p.Val44Met in 7/17 individuals, or in-frame, all affecting conserved residues located in transmembrane regions of the protein. In 12 individuals, hematological abnormalities co-occurred, such as macrocytosis and hemolysis, requiring blood transfusions in some. We modeled six variants (p.Val44Met, p.Arg433His, p.Thr481Asn, p.Gly580Ser, p.Arg660Thr, and p.Phe697Leu), each affecting a distinct transmembrane domain of the channel, in transfected Neuro2a cells and demonstrated inward leak cation currents across the mutated channel even in isotonic conditions, while the response to hypo-osmotic challenge was impaired, as were the Ca2+ transients generated under hypo-osmotic stimulation. Ectopic expression of the p.Val44Met and p.Gly580Cys variants in Drosophila resulted in early death. TMEM63B-associated DEE represents a recognizable clinicopathological entity in which altered cation conductivity results in a severe neurological phenotype with progressive brain damage and early-onset epilepsy associated with hematological abnormalities in most individuals.


Asunto(s)
Encefalopatías , Discapacidad Intelectual , Humanos , Encefalopatías/genética , Canales Iónicos/genética , Encéfalo , Discapacidad Intelectual/genética , Fenotipo
5.
Neurol Genet ; 8(3): e677, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35518571

RESUMEN

Background and Objectives: To report on the novel association of biallelic variant in atonal basic helix-loop-helix transcription factor 1 (ATOH1) gene and pontocerebellar hypoplasia (PCH), severe global developmental delay, intellectual disability, and hearing loss in a family with 2 affected siblings. Methods: A detailed clinical assessment and exome sequencing of peripheral blood sample were performed. Segregation analysis with Sanger sequencing and structural modeling of the variant was performed to support the pathogenicity of the variant. Results: A homozygous missense variant (NM_005172.1:c.481C>G) in the ATOH1 gene was identified in the proband and his affected sister. The segregation analysis subsequently confirmed its segregation with an apparently recessive PCH in this family. ATOH1 encodes for the atonal basic helix-loop-helix (bHLH) transcription factor 1, a core transcription factor in the developing cerebellum, brainstem, and dorsal spinal cord, and in the ear. The identified variant results in the p.(Arg161Gly) amino acid substitution in the evolutionarily conserved DNA-binding bHLH domain of the ATOH1 protein. Biallelic missense variants in this domain were previously reported to result in disordered cerebellar development and hearing loss in animal models. In silico homology modeling revealed that p.Arg161Gly in ATOH1 protein probably disrupts a salt bridge with DNA backbone phosphate and increases the flexibility of the bHLH helix-both of which together affect the binding capability of the bHLH domain to the DNA. Discussion: Based on the sequencing results and evidence from structural modeling of the identified variant, as well as with previous reports of ATOH1 gene disruption, we conclude that ATOH1 may represent a novel candidate gene associated with the phenotype of PCH, global developmental delay, and hearing loss in humans.

6.
Neurol Genet ; 8(2): e658, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35243002

RESUMEN

BACKGROUND AND OBJECTIVES: To expand the phenotype and genotype associated with PCYT2-related disorder. METHODS: Exome sequencing data from a patient with molecularly undiagnosed complex spastic paraplegia and axonal motor and sensory polyneuropathy were analyzed. Clinical data and nerve conduction studies of the patient and his affected brother were collected, and their phenotype and genotype were compared with previously reported patients with PCYT2-related disorder. RESULTS: A novel homozygous missense variant in PCYT2 (NM_001184917.2) c.88T>G; p.(Cys30Gly) was identified. This variant is located in a highly conserved tyrosine kinase site and is predicted damaging by several variant annotation tools. Both patients reported here and the previously published patients share several phenotypic features, including short stature, spastic tetraparesis, cerebellar ataxia, epilepsy, and cognitive decline. Axonal polyneuropathy, diagnosed in both brothers, was not previously reported. DISCUSSION: This family with a novel PCYT2 variant expands the clinical spectrum of PCYT2-related disorder to include axonal motor and sensory polyneuropathy and the genetic spectrum to include the variant located in the first catalytic domain, whereas all previously reported variants are located in the second catalytic domain. Further research is required to disentangle the underlying pathophysiologic mechanisms, leading to the complex phenotype of PCYT2-related disorder.

7.
J Stroke Cerebrovasc Dis ; 31(2): 106260, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34933275

RESUMEN

BACKGROUND: CAA is a heterogeneous group of diseases caused by Aß deposition in the vascular walls, often leading to lobar ICH and cognitive impairment. Although CAA is rare in younger patients, it has been associated with specific mutations as well as with other causes. CASE PRESENTATION: We present four cases of patients with CAA and recurrent ICH who have a history of severe TBI in childhood. CONCLUSION: Our cases as well as review of the literature suggest that a history of TBI in patients with genetic predispositions such as male sex may be associated with CAA in young persons.


Asunto(s)
Angiopatía Amiloide Cerebral , Traumatismos Craneocerebrales , Angiopatía Amiloide Cerebral/diagnóstico , Angiopatía Amiloide Cerebral/genética , Traumatismos Craneocerebrales/epidemiología , Predisposición Genética a la Enfermedad , Humanos , Masculino
8.
Front Genet ; 12: 692087, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34234817

RESUMEN

SATB2-associated syndrome (SAS) is an autosomal dominant neurogenetic multisystemic disorder. We describe two individuals with global developmental delay and hypotonia who underwent an extensive evaluation to rule out an underlying mitochondrial disorder before their eventual diagnosis of SAS. Although the strict application of the clinical mitochondrial disease score only led to the designation of "possible" mitochondrial disorder for these two individuals, other documented abnormalities included nonspecific neuroimaging findings on magnetic resonance imaging and magnetic resonance spectroscopy, decreased complex I activity on muscle biopsy for patient 2, and variation in the size and relative proportion of types of muscle fibers in the muscle biopsies that were aligned with mitochondrial diseases. SAS should be in the differential diagnoses of mitochondrial disorders, and broad-spectrum diagnostic tests such as exome sequencing need to be considered early in the evaluation process of undiagnosed neurodevelopmental disorders.

9.
J Community Genet ; 12(2): 247-256, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33452619

RESUMEN

According to a rough estimate, one in fifteen people worldwide is affected by a rare disease. Rare diseases are therefore common in clinical practice; however, timely diagnosis of rare diseases is still challenging. Introduction of novel methods based on next-generation sequencing (NGS) technology offers a successful diagnosis of genetically heterogeneous disorders, even in case of unclear clinical diagnostic hypothesis. However, the application of novel technology differs among the centres and health systems significantly. Our goal is to discuss the impact of the implementation of NGS in the diagnosis of rare diseases and present advantages along with challenges of diagnostic approach. Systematic implementation of NGS in health systems can significantly improve the access of patients with rare diseases to diagnosis and reduce the dependence of national health systems for cross-border collaboration.

10.
Hum Genet ; 140(4): 579-592, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33048237

RESUMEN

We aimed to detect the causative gene in five unrelated families with recessive inheritance pattern neurological disorders involving the central nervous system, and the potential function of the NEMF gene in the central nervous system. Exome sequencing (ES) was applied to all families and linkage analysis was performed on family 1. A minigene assay was used to validate the splicing effect of the relevant discovered variants. Immunofluorescence (IF) experiment was performed to investigate the role of the causative gene in neuron development. The large consanguineous family confirms the phenotype-causative relationship with homozygous frameshift variant (NM_004713.6:c.2618del) as revealed by ES. Linkage analysis of the family showed a significant single-point LOD of 4.5 locus. Through collaboration in GeneMatcher, four additional unrelated families' likely pathogenic NEMF variants for a spectrum of central neurological disorders, two homozygous splice-site variants (NM_004713.6:c.574+1G>T and NM_004713.6:c.807-2A>C) and a homozygous frameshift variant (NM_004713.6: c.1234_1235insC) were subsequently identified and segregated with all affected individuals. We further revealed that knockdown (KD) of Nemf leads to impairment of axonal outgrowth and synapse development in cultured mouse primary cortical neurons. Our study demonstrates that disease-causing biallelic NEMF variants result in central nervous system impairment and other variable features. NEMF is an important player in mammalian neuron development.


Asunto(s)
Antígenos de Neoplasias/genética , Axones , Enfermedades del Sistema Nervioso Central/genética , Mutación con Pérdida de Función , Proteínas de Transporte Nucleocitoplasmático/genética , Polineuropatías/genética , Adolescente , Adulto , Alelos , Animales , Encéfalo/metabolismo , Células Cultivadas , Consanguinidad , Femenino , Perfilación de la Expresión Génica , Genes Recesivos , Homocigoto , Humanos , Masculino , Ratones Endogámicos C57BL , Linaje , RNA-Seq , Secuenciación del Exoma , Adulto Joven
11.
Orphanet J Rare Dis ; 15(1): 151, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32539836

RESUMEN

BACKGROUND: Mowat-Wilson syndrome (MWS; OMIM #235730) is a genetic condition caused by heterozygous mutations or deletions of the ZEB2 gene. It is characterized by moderate-severe intellectual disability, epilepsy, Hirschsprung disease and multiple organ malformations of which congenital heart defects and urogenital anomalies are the most frequent ones. To date, a clear description of the physical development of MWS patients does not exist. The aim of this study is to provide up-to-date growth charts specific for infants and children with MWS. Charts for males and females aged from 0 to 16 years were generated using a total of 2865 measurements from 99 MWS patients of different ancestries. All data were collected through extensive collaborations with the Italian MWS association (AIMW) and the MWS Foundation. The GAMLSS package for the R statistical computing software was used to model the growth charts. Height, weight, body mass index (BMI) and head circumference were compared to those from standard international growth charts for healthy children. RESULTS: In newborns, weight and length were distributed as in the general population, while head circumference was slightly smaller, with an average below the 30th centile. Up to the age of 7 years, weight and height distribution was shifted to slightly lower values than in the general population; after that, the difference increased further, with 50% of the affected children below the 5th centile of the general population. BMI distribution was similar to that of non-affected children until the age of 7 years, at which point values in MWS children increased with a less steep slope, particularly in males. Microcephaly was sometimes present at birth, but in most cases it developed gradually during infancy; many children had a small head circumference, between the 3rd and the 10th centile, rather than being truly microcephalic (at least 2 SD below the mean). Most patients were of slender build. CONCLUSIONS: These charts contribute to the understanding of the natural history of MWS and should assist pediatricians and other caregivers in providing optimal care to MWS individuals who show problems related to physical growth. This is the first study on growth in patients with MWS.


Asunto(s)
Enfermedad de Hirschsprung , Discapacidad Intelectual , Microcefalia , Niño , Facies , Femenino , Gráficos de Crecimiento , Enfermedad de Hirschsprung/genética , Proteínas de Homeodominio , Humanos , Lactante , Recién Nacido , Discapacidad Intelectual/genética , Italia , Masculino , Microcefalia/genética , Proteínas Represoras , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética
12.
Klin Padiatr ; 231(2): 80-86, 2019 Mar.
Artículo en Alemán | MEDLINE | ID: mdl-30870874

RESUMEN

Recurrent myocarditis is rare with only few reports having been published for paediatric cases. Repeated use of extracorporeal membrane oxygenation is also uncommon. In this paper we will present a very rare case of a 7-year old girl with recurrent fulminant myocarditis with heart failure requiring cardiopulmonary resuscitation and mechanical circulatory support with extracorporeal membrane oxygenation. Both episodes were precipitated by a viral upper respiratory tract infection, and in both cases the cardiac function eventually completely recovered. The second episode of fulminant myocarditis was particularly complex with markedly elevated markers of myocardiocytolysis, multiorgan dysfunction and the need for prolonged mechanical circulatory support. Nevertheless, the patient made a remarkable recovery. A comprehensive diagnostic workup pointed towards an aberrant immune response as the likely cause of the girl's susceptibility for fulminant myocarditis.


Asunto(s)
Reanimación Cardiopulmonar , Oxigenación por Membrana Extracorpórea/métodos , Insuficiencia Cardíaca/terapia , Miocarditis/terapia , Niño , Femenino , Corazón Auxiliar , Humanos , Pediatría/métodos , Resultado del Tratamiento
13.
PLoS One ; 13(1): e0188578, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29293505

RESUMEN

Hereditary hearing loss (HL) is a common sensory disorder, with an incidence of 1-2 per 1000 newborns, and has a genetic etiology in over 50% of cases. It occurs either as part of a syndrome or in isolation and is genetically very heterogeneous which poses a challenge for clinical and molecular diagnosis. We used exome sequencing to seek a genetic cause in a group of 56 subjects (49 probands) with HL: 32 with non-syndromic non-GJB2 HL and 17 with syndromic HL. Following clinical examination and clinical exome sequencing, an etiological diagnosis was established in 15 probands (15/49; 30%); eight (8/17;47%) from the syndromic group and seven (7/32; 21%) from the non-syndromic non-GJB2 subgroup. Fourteen different (half of them novel) non-GJB2 variants causing HL were found in 10 genes (CHD7, HDAC8, MITF, NEFL, OTOF, SF3B4, SLC26A4, TECTA, TMPRSS3, USH2A) among 13 probands, confirming the genetic heterogeneity of hereditary HL. Different genetic causes for HL were found in a single family while three probands with apparent syndromic HL were found to have HL as a separate clinical feature, distinct from the complex phenotype. Clinical exome sequencing proved to be an effective tool used to comprehensively address the genetic heterogeneity of HL, to detect clinically unrecognized HL syndromes, and to decipher complex phenotypes in which HL is a separate feature and not part of a syndrome.


Asunto(s)
Secuenciación del Exoma , Pérdida Auditiva/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Genotipo , Pérdida Auditiva/diagnóstico , Humanos , Masculino , Fenotipo , Síndrome , Adulto Joven
14.
Am J Hum Genet ; 101(5): 844-855, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29100094

RESUMEN

A series of simplex cases have been reported under various diagnoses sharing early aging, especially evident in congenitally decreased subcutaneous fat tissue and sparse hair, bone dysplasia of the skull and fingers, a distinctive facial gestalt, and prenatal and postnatal growth retardation. For historical reasons, we suggest naming the entity Fontaine syndrome. Exome sequencing of four unrelated affected individuals showed that all carried the de novo missense variant c.649C>T (p.Arg217Cys) or c.650G>A (p.Arg217His) in SLC25A24, a solute carrier 25 family member coding for calcium-binding mitochondrial carrier protein (SCaMC-1, also known as SLC25A24). SLC25A24 allows an electro-neutral and reversible exchange of ATP-Mg and phosphate between the cytosol and mitochondria, which is required for maintaining optimal adenine nucleotide levels in the mitochondrial matrix. Molecular dynamic simulation studies predict that p.Arg217Cys and p.Arg217His narrow the substrate cavity of the protein and disrupt transporter dynamics. SLC25A24-mutant fibroblasts and cells expressing p.Arg217Cys or p.Arg217His variants showed altered mitochondrial morphology, a decreased proliferation rate, increased mitochondrial membrane potential, and decreased ATP-linked mitochondrial oxygen consumption. The results suggest that the SLC25A24 mutations lead to impaired mitochondrial ATP synthesis and cause hyperpolarization and increased proton leak in association with an impaired energy metabolism. Our findings identify SLC25A24 mutations affecting codon 217 as the underlying genetic cause of human progeroid Fontaine syndrome.


Asunto(s)
Envejecimiento/genética , Antiportadores/genética , Enfermedades del Desarrollo Óseo/genética , Proteínas de Unión al Calcio/genética , Proteínas Mitocondriales/genética , Mutación/genética , Adenina/metabolismo , Adenosina Trifosfato/metabolismo , Citosol/metabolismo , Femenino , Muerte Fetal , Fibroblastos/metabolismo , Humanos , Lactante , Recién Nacido , Masculino , Potencial de la Membrana Mitocondrial/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Simulación de Dinámica Molecular , Oxígeno/metabolismo , Fosfatos/metabolismo , Síndrome
15.
Hum Mutat ; 38(11): 1477-1484, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28726266

RESUMEN

Biallelic GLDN mutations have recently been identified among infants with lethal congenital contracture syndrome 11 (LCCS11). GLDN encodes gliomedin, a protein required for the formation of the nodes of Ranvier and development of the human peripheral nervous system. We report six infants and children from four unrelated families with biallelic GLDN mutations, four of whom survived beyond the neonatal period into infancy, childhood, and late adolescence with intensive care and chronic respiratory and nutritional support. Our findings expand the genotypic and phenotypic spectrum of LCCS11 and demonstrate that the condition may not necessarily be lethal in the neonatal period.


Asunto(s)
Artrogriposis/diagnóstico , Artrogriposis/genética , Genes Letales , Proteínas de la Membrana/genética , Mutación , Proteínas del Tejido Nervioso/genética , Fenotipo , Artrogriposis/mortalidad , Biopsia , Análisis Mutacional de ADN , Resultado Fatal , Estudios de Asociación Genética , Humanos , Lactante , Recién Nacido , Masculino , Linaje , Raíces Nerviosas Espinales/ultraestructura , Secuenciación del Exoma
17.
Cell ; 168(5): 830-842.e7, 2017 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-28235197

RESUMEN

De novo copy number variants (dnCNVs) arising at multiple loci in a personal genome have usually been considered to reflect cancer somatic genomic instabilities. We describe a multiple dnCNV (MdnCNV) phenomenon in which individuals with genomic disorders carry five to ten constitutional dnCNVs. These CNVs originate from independent formation incidences, are predominantly tandem duplications or complex gains, exhibit breakpoint junction features reminiscent of replicative repair, and show increased de novo point mutations flanking the rearrangement junctions. The active CNV mutation shower appears to be restricted to a transient perizygotic period. We propose that a defect in the CNV formation process is responsible for the "CNV-mutator state," and this state is dampened after early embryogenesis. The constitutional MdnCNV phenomenon resembles chromosomal instability in various cancers. Investigations of this phenomenon may provide unique access to understanding genomic disorders, structural variant mutagenesis, human evolution, and cancer biology.


Asunto(s)
Aberraciones Cromosómicas , Variaciones en el Número de Copia de ADN , Enfermedades Genéticas Congénitas/embriología , Enfermedades Genéticas Congénitas/genética , Inestabilidad Genómica , Mutación , Puntos de Rotura del Cromosoma , Duplicación Cromosómica , Replicación del ADN , Desarrollo Embrionario , Femenino , Gametogénesis , Humanos , Masculino
18.
BMC Med Genet ; 17(1): 81, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27846804

RESUMEN

BACKGROUND: The objective of reported study was to evaluate the clinical utility of prenatal microarray testing for submicroscopic genomic imbalances in routine prenatal settings and to stratify the findings according to the type of fetal ultrasound anomaly. METHODS: From July 2012 to October 2015 chromosomal microarray testing was performed in 218 fetuses with varying indications for invasive prenatal diagnosis: abnormal karyotype, ultrasound anomalies, pathogenic variant in previous pregnancy or carriership in a parent. RESULTS: The detection rate in the group of fetuses with ultrasound anomalies was 10,0% for pathogenic copy number variants (CNVs), five of them being larger than 8 Mb and expected to be seen on prenatal karyotype. If only those pathogenic CNVs below the classical karyotype resolution are considered, chromosomal microarray testing provided an additional 7,7% diagnostic yield in here reported series. When stratified according to the ultrasound anomalies, the highest percentage of pathogenic CNVs were detected in the group of fetuses with multiple congenital anomalies (16,7%) and lowest in the group of isolated in utero growth restriction (6,3%). In the group of cases with isolated increased nuchal translucency we identified a small interstitial deletion of 16p24.1 involving FOXF1 gene. Prenatal aCGH also provided important insights into cases with seemingly balanced chromosomal rearrangements found on prenatal karyotype, where additional pathogenic CNV were discovered. CONCLUSION: Prenatal chromosomal microarray testing significantly increases the diagnostic yield when compared with conventional karyotyping. The highest added value is shown in prenatal diagnostics in fetuses with abnormal ultrasound results. Variants of unknown significance and risk factor CNVs present important challenges and should be discussed with parents in advance, therefore pretest counseling prior to prenatal testing is very important.


Asunto(s)
Anomalías Múltiples/genética , Hibridación Genómica Comparativa/métodos , Anomalías Múltiples/patología , Aberraciones Cromosómicas , Variaciones en el Número de Copia de ADN , Femenino , Factores de Transcripción Forkhead/genética , Humanos , Cariotipo , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Embarazo , Diagnóstico Prenatal , Ultrasonografía Prenatal
19.
Ther Apher Dial ; 20(3): 318-21, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27312922

RESUMEN

Hajdu-Cheney syndrome (HJCYS) is a rare, autosomal dominant, skeletal disorder caused by mutations in the NOTCH2 signaling pathway for which genetic testing has recently become available. Renal abnormalities are associated in at least 10% of cases. We present an 8-year-old Caucasian boy, born with multiple dysmorphic features consistent with HJCYS. Imaging of the urinary tract revealed bilateral cystic dysplastic kidneys with associated vesicoureteral reflux. Renal function has been impaired since birth and deteriorated progressively to end-stage renal disease (ESRD) by the age of two and a half years, when peritoneal dialysis was initiated and only recently renal transplantation was performed. Additional congenital abnormalities and multisystem involvement in HJCYS further complicated management, and he developed refractory anemia. Molecular diagnosis was confirmed by identification of a truncating mutation in exon 34 of NOTCH2. Although, renal abnormalities are considered an integral part of the HJCYS, published reports on ESRD are scarce. In those few published cases, where ESRD was recognized, renal failure developed either in late adolescence or adulthood. This is the first report of early ESRD occurring in a child. Patients with HJCYS may need chronic renal replacement therapy even in early childhood. The management of these children can be challenging given the multisystemic manifestations of HJCYS.


Asunto(s)
Síndrome de Hajdu-Cheney/fisiopatología , Fallo Renal Crónico/etiología , Receptor Notch2/genética , Niño , Progresión de la Enfermedad , Exones , Síndrome de Hajdu-Cheney/diagnóstico , Síndrome de Hajdu-Cheney/genética , Humanos , Fallo Renal Crónico/diagnóstico , Fallo Renal Crónico/genética , Masculino , Mutación
20.
Genet Med ; 18(11): 1102-1110, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27031083

RESUMEN

PURPOSE: Genome-wide sequencing approaches are increasingly being used in place of disease gene panel sequencing approaches. Despite the well-recognized benefits of these approaches, they also carry with them an increased burden of analyzing overwhelmingly large gene targets and an increased possibility of detecting incidental findings. METHODS: We propose a novel approach for design of individualized phenotype gene panels using the set of signs and symptoms observed and selecting relevant genes on the basis of known phenotype-gene associations. RESULTS: We used results of diagnostic exome sequencing in 405 cases submitted to our institution to show retrospectively that using the phenotype gene panel increases the sensitivity of masked exome analysis (increase from 25.4 to 29.7% in overall diagnostic yield). We also show that such a strategy enables the possibility of masked analysis of genome-wide sequencing data in patients with poorly defined and multifaceted clinical presentations. Ultimately, we show that this approach enables control over the incidental findings rate (0.25% in phenotype gene panels). Finally, we provide a Web tool for customized phenotype panel creation (available at http://www.kimg.eu/generator). CONCLUSION: In conclusion, we present a novel approach to a phenotype-driven diagnostic process of genome scale sequencing data that harnesses the sensitivity of these approaches while restricting the analysis to genes relevant to clinical presentation in patient.Genet Med 18 11, 1102-1110.


Asunto(s)
Exoma/genética , Marcación de Gen/métodos , Estudios de Asociación Genética , Genoma Humano , Femenino , Variación Genética/genética , Secuenciación de Nucleótidos de Alto Rendimiento/tendencias , Humanos , Hallazgos Incidentales , Masculino , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...